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We analyse the pros and cons of analog versus
digital computation in living cells. Our analysis is
based on fundamental laws of noise in gene and
protein expression, which set limits on the energy,
time, space, molecular count and part-count resources
needed to compute at a given level of precision.
We conclude that analog computation is significantly
more efficient in its use of resources than deterministic
digital computation even at relatively high levels
of precision in the cell. Based on this analysis, we
conclude that synthetic biology must use analog,
collective analog, probabilistic and hybrid analog–
digital computational approaches; otherwise, even
relatively simple synthetic computations in cells such
as addition will exceed energy and molecular-count
budgets. We present schematics for efficiently repre-
senting analog DNA–protein computation in cells.
Analog electronic flow in subthreshold transistors
and analog molecular flux in chemical reactions obey
Boltzmann exponential laws of thermodynamics and
are described by astoundingly similar logarithmic
electrochemical potentials. Therefore, cytomorphic
circuits can help to map circuit designs between
electronic and biochemical domains. We review
recent work that uses positive-feedback linearization
circuits to architect wide-dynamic-range logarithmic
analog computation in Escherichia coli using three
transcription factors, nearly two orders of magnitude
more efficient in parts than prior digital
implementations.

1. Introduction, motivations and overview
Every living cell within us is a hybrid analog–digital
supercomputer that implements highly computationally
intensive nonlinear, stochastic, differential equations
with 30 000 gene–protein state variables that interact
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via complex feedback loops. The average 10 µm human cell performs these amazing
computations with 0.34 nm self-aligned nanoscale DNA–protein devices, with 20 kT per
molecular operation (1 ATP molecule hydrolysed), approximately 0.8 pW of power consumption
(10 M ATP s−1) and with noisy, unreliable devices that collectively interact to perform reliable
hybrid analog–digital computation [1]. Based on a single amino acid among thousands of
proteins, immune cells must collectively decide whether a given molecule or molecular fragment
is from a friend or foe, and if they err in their decision by even a tiny amount, autoimmune disease,
infectious disease, or cancer could originate with high probability every day [2]. Even at the end
of Moore’s law, we will not match such performance by even a few orders of magnitude [1,3].

The field of synthetic biology attempts to transfer engineering design principles and
experimental techniques into rational biological design [4–8]. It represents the ultimate limit
of Moore’s law: computation with the molecules themselves at the nanoscale through the
use of controlled biochemistry and biophysics. Such an approach can blend ‘fabrication’ and
‘computation’ in a seamless fashion. The self-organizing amorphous soup in a cell processes
information while it destroys, repairs and rebuilds the structures needed to do so. It is remarkable
that it does so through a self-aligned nanotechnology with no explicit wiring. Instead, chemical
binding among specific molecules serves to ‘implicitly wire’ them together and causes them
to interact via chemical reactions. These reactions cause transformations of state, which are
necessary for computation to occur.

While significant progress has been made w.r.t. fundamentals and applications in the field of
synthetic biology, it has failed to scale significantly in complexity over more than a decade [9,10].
One important reason for this failure has been its overemphasis on digital paradigms of thought:
because digital design is relatively straightforward and scalable, and because molecules and
atoms are discrete, it is logical to assume that engineering biology as we engineer switches
and logic gates today will bear fruit. The sheer force and powerful success of digital computation
over the past few decades has been impressive. Nevertheless, we must not forget that digital
computation has not offered an effective paradigm for computing efficiently and precisely with
noisy and unreliable devices; that multi-logic-gate computations can impose significant metabolic
or toxicity burdens on cells owing to their need to use a lot of parts and power; that the
fact that there are five to six orders of magnitude fewer genes per cell than digital transistors
per chip means that using genes to only perform logic is likely not an efficient way to attain
high complexity; that a library of ‘digital parts’ with good on–off ratios, low standby power
consumption and low crosstalk does not exist in biology; that the computing basis functions
in cells are not really logic functions and abstracting them as such compromises computational
efficiency; and that logic basis functions are not the only universal computation primitives.

Nature is not purely digital. While molecules are discrete and digital, all molecular interactions
that lead to computation, e.g. association, transformation and dissociation chemical reactions,
have a probabilistic analog nature to them. Depending on one’s point of view, computation in a
cell is owing to lots of probabilistic digital events or owing to continuous analog computation
with noise. Both views are equivalent. Indeed, the noise in analog systems is related to
the Poisson rate of the underlying probabilistic digital events; the shot noise of thermally
generated diffusion currents caused by these Poisson processes generates noise in all analog
systems [1,11].

Synthetic biology has now recognized that the signals in cells are stochastic (noisy) and
analog (graded) in their nature [12]. The ‘1’s and ‘0’s of today’s digital computers are useful
abstractions of the analog signals in cells, but are often an oversimplification. Furthermore, as
in analog circuits, the wiring of the output of one circuit to the input of another leads to ‘loading’
interactions that degrade overall function and prevents simple modular digital abstractions
from being effective [13]. While logic basis functions and positive-feedback loops are certainly
used by cells to make irreversible decisions, to organize sequential computation and to perform
signal restoration, analog computation is extremely important for the cell’s incredible efficiency
w.r.t. the use of energy, time and space [1,14]. The efficiency arises because analog computation
can use powerful input–output basis functions in the technology for addition, multiplication,
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exponentials, logarithms, power laws and spatio-temporal filtering, which are already naturally
present in the differential equations of physics and chemistry. Therefore, it does not need to
re-invent these input–output basis functions from scratch with logic. For example, the production
fluxes of two genes that encode the synthesis of a common output protein automatically perform
addition via a molecular version of Kirchoff’s current law without the need for tedious logic; the
binding of two molecules provides a basis function for multiplication; the binding of identical
molecules in a dimer provides basis functions for computing squares or square roots; molecular
degradation naturally provides basis functions for temporal filtering; diffusion naturally provides
a basis function for spatial filtering.

The pioneers of digital computation, John von Neumann and Alan Turing, appreciated the
great power of analog computation and were investigating it intensely to cope with the limitations
of using only logic to compute. Near the end of their lives, they were working on understanding
analog computation in brains [15] and in cells [16], respectively. Analog computation has long
been appreciated to be important in the brain [17], but its importance in cells has been greatly
underappreciated. The power of the analog wave function in quantum mechanics enables
quantum computers to solve problems that no digital computer can [18].

In this article, we begin by describing analog circuit schematics for a single gene, which
provide a foundation for the rest of the article and a quick introduction to the computational
basics of cell biology. Then, we review the pros and cons of analog versus digital computation
with a focus on computation in living cells. In particular, we extend a prior analysis [1,14] to a
simple exemplary computation in Saccharomyces cerevisae (yeast) cells, namely that of adding two
numbers in an analog versus a digital fashion. This simple example will help us to analyse general
trade-offs w.r.t. energy consumption or w.r.t. the number of molecules needed to implement
addition at a given level of computational precision. The analysis will show that, below a certain
crossover computational precision, it is highly advantageous to compute in an analog fashion to
reduce the energy, part count or number of molecules (and thus volume or space) needed for the
computation. It is therefore not surprising that cells exploit analog computation to perform their
moderate-precision computations. Other work has also shown that collective analog computation
can use several moderate-precision interacting analog units to architect computations of arbitrary
precision, e.g. 16-bit addition via four interacting 4-bit-precise analog computational units [1,19],
on an experimental silicon chip [20]. Collective analog systems can also architect arbitrary
complex computations through interactions of moderate-precision analog computational units
in the brain and in the cell. Indeed, cellular and neural computations bear 13 similarities to each
other from a hybrid analog–digital point of view [1].

In analog computation, every signal and every device are not reliable, but important final
or decisive outputs are. To attenuate noise, analog computation invariably relies on feedback
loops, the wise use of energy, time or space resources to improve precision via averaging at
critical state variables and reference inputs, learning and adaptation, nonlinearities, such as
thresholding or digitization, or invariants and attractors in the analog dynamical system that
cause it to equilibrate to restorative discrete outputs. Though noise limits information capacity, it
can sometimes be beneficial for searching intractable combinatorial spaces and for improving the
detection of signals by phenomena such as stochastic resonance.

How do we transfer analog circuits in electronics to analog circuits in cells? Fortunately,
there is a deep connection between electronics and chemistry, which greatly aids the design of
analog circuit motifs and analog computation in synthetic biology. This deep connection arises
because there are astounding similarities between the equations that describe noisy electronic
flow in subthreshold transistors and the equations that describe noisy molecular flow in chemical
reactions, both of which obey the laws of exponential thermodynamics [1,21]. Therefore, circuit
motifs from the electronic domain are useful for creating circuit motifs in biology and vice versa
in a cytomorphic fashion, as figure 3 shows [1]. A recent paper [22] showed that log-domain analog
circuits in living Escherichia coli bacterial cells, which were inspired by log-domain electronic
circuits, could efficiently compute logarithms, add, subtract, divide and do square-root-like
computations with less than three genetic parts. By contrast, a prior in vitro 2-bit-precise digital
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square-root computation required 130 DNA-based parts [23]. Another circuit described in [22]
was able to accurately compute the logarithmic ratio of two molecular concentrations over four
orders of magnitude. The latter circuit used novel positive-feedback linearization circuits, similar
to those used in my laboratory in log-domain subthreshold electronic amplifiers in the past
[24]. The genetic circuits described in [22] may have wide applications for wide-dynamic-range
molecular sensing, complex computation with few parts in biotechnology and medicine, and for
the fine control of gene expression.

The analog circuits approach described in this article may enable large-scale design and
analysis in synthetic and systems biology, which is faithful to how messy analog biology works,
quite different from clean, well-defined digital design. It may enable several applications in
synthetic biology, wherein, just as in electronics today, all applications benefit from low-part-
count, low energy usage and clever analog feedback loops to improve performance. For example,
synthetic biological circuits will be increasingly important in finding cures for diabetes, cancer,
autoimmune, infectious and other diseases [25] wherein sophisticated synthetic feedback loops
will have to compensate for error in natural feedback loops; synthetic molecular circuits are
also important in biomolecule and pharmaceutical manufacturing [26] wherein efficient resource
consumption and economic viability are closely tied; in energy production and environmental
remediation [27,28] where efficient bacterial operation and fine control of gene expression is
beneficial; in artificial fuel generation [29] where energy efficiency is paramount; in environmental
pathogen or pollutant sensing where robust single-molecule analog amplification and wide-
dynamic-range sensing is beneficial; in the design of ‘nanorobots’ and biomechanical devices
[30] where analog feedback sensing and actuation loops could enable synthetic target-tracking
behaviour. Analog synthetic biology can serve to make synthetic computation practical because
it does not impose man-made views of what computation should be in the cell, but computes in
a fashion that is similar to the way the cell itself computes.

Section 2 provides an analog circuit schematic of a gene that is useful for accurately
representing steady-state, dynamic and stochastic phenomena. The success of analog circuit
design arises in large part from having efficient pictorial representations that are more intuitive to
humans than reams of differential equations. Intuition aids design. The analog circuit schematics
nevertheless preserve most of the needed mathematical information in the equation as labelled
parameters, such that analysis can aid design. Section 3 discusses the pros and cons of analog
versus digital computation, first intuitively, then quantitatively. Section 4 discusses the deep
similarities between electronics and chemistry, which can enable powerful cytomorphic circuit
design in cells owing to the presence of a common logarithmic electrochemical potential. Section 5
provides examples of such circuit design using log-domain genetic circuits. Section 6 concludes
with a summary of seven benefits of analog computation in synthetic biology.

2. Analog circuit schematic of a genetic promoter
Figure 1a shows an analog circuit schematic of a genetic circuit with two inputs: one activator,
Vact, which enhances the rate of gene transcription (expression) and one repressor, Vrep, which
suppresses the rate of gene transcription. The gene transcription initiates from a ‘promoter region’
on the DNA, Pact−rep, near which these molecules bind and interact with the DNA reading
machinery of the cell. The diamond-shaped dependent current generator, Pact−rep, outputs
an mRNA transcription current that is controlled by these ‘transcription factor’ inputs via an
‘analogic’ basis function with both linear analog and saturating digital regions of operation (the
minimum and maximum expressions) [21]. The mRNA transcripts accumulate on the capacitor
C (which always has C = 1 [1]) to create VmRNA, the molecular concentration of mRNA.The
resistor RmRNA degrades the mRNA such that the synthesis current from the DNA promoter
Pact−rep eventually balances the degradation current and VmRNA equilibrates at a steady-state
value. The transcription factor Vact is itself activated by an inducer input, Vact

ind, which binds
to it via the ‘multiplier’ symbol, and activates it to bind DNA and stimulate transcription.
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Figure 1. Analog schematic for genetic circuits. (a) An electrical equivalent circuit accurately represents the noise, dynamics
and stochastics of DNA–protein circuits. (b) A simplification of the circuit in (a) that neglects mRNA dynamics.

Similarly, the transcription factor, Vrep, which normally binds DNA and represses transcription
is de-repressed by Vrep

ind, such that the net effect of Vrep
ind is to also stimulate gene expression in

this example. Repression is always indicated by the T-shaped symbols and activation is always
indicated by arrow inputs at the border of the multiplier or at the border of the dependent current
generator. Inducer inputs are typically small-molecule external inputs to the cell that diffuse into
it and bind internal transcription factors within the cell. In bacteria and yeast, it is not common to
have more than two controlling inputs at a DNA promoter, but mammalian cells can have several
controlling inputs. The dependent generator will have as many inputs as the DNA promoter.

The dependent current generator on the right end of figure 1a ‘translates’ VmRNA via ribosomal
machinery in the cell to create a synthesis protein current, which accumulates on a capacitor to
create Vprot, the molecular concentration. The resistor Rprot degrades the protein such that the
synthesis translation current balances the protein degradation current and Vprot reaches a steady-
state value. The equations in figure 1a define Av and βeff, which determine the gain from VmRNA
to Vprot and a noise factor similar to the current gain of a bipolar transistor, respectively [1]. We
discuss the importance of βeff for determining noise in §3. The dynamics and stochastics (noise) of
the circuit of figure 1a faithfully capture experimental dynamic data [31] as well as noise data [32]
provided that the shot noise of the molecular-dependent generators and resistors is accounted for
correctly [1]: the resistor noise, unlike that in a normal resistor [11], is simply the shot noise of the
net current flowing through it [1]. The current gain βeff in figure 1a corresponds to a ‘burst factor’
that has been experimentally measured [32]. Compact 8-transistor analog circuits, which are
current-mode circuit versions of figure 1a, create analogic basis functions that are mathematically
exact representations of prior models [21]. They also match experimental input–output data
gathered from non-pathogenic E. coli [21].

As Rprot is typically much greater than RmRNA, it is common to assume that the mRNA
dynamics are relatively instantaneous compared with protein dynamics [31]. Thus, the
approximate circuit schematic of figure 1b, which is a simplified representation of figure 1a
without mRNA dynamics and without explicit mRNA state variables, is significantly more
convenient and usually accurate. It allows one to focus on a protein-input–protein-output point
of view. In this article, our noise analysis in §3 is based on the accurate figure 1a; all other genetic
circuit schematics are drawn similar to that of figure 1b.

3. Analog versus digital
We begin with an intuitive comparison of the pros and cons of analog versus digital computation
presented in table 1.

Table 1 presents that analog computation emphasizes efficiency while digital computation
emphasizes robustness. Robustness–efficiency trade-offs are ubiquitous in all engineering
systems [33] and are at the heart of all good engineering design. A mathematical understanding
of noise is essential for quantifying the intuition behind table 1. Therefore, we shall begin by
deriving some important results regarding molecular noise in cells.
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Table 1. Intuitive analog versus digital comparison.

analog digital

(1) compute on a continuous set, e.g. [0,1], graded protein

production from low to a maximum level

(1) compute on a discrete set, e.g. {0,1}, protein produced at a

maximum level or not present at all
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2) the basis functions for computation arise from the

physics and chemistry of the computing devices such

that the amount of computation squeezed out of a

single genetic, RNA or protein circuit is high

(2) the basis functions for computation arise from the

mathematics of Boolean logic such that the amount of

computation squeezed out of a single genetic, RNA or

protein circuit is low
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) one wire, channel or state variable represents many bits

of information

(3) one wire, channel or state variable represents one bit of

information
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4) computation is sensitive to the parameters of the

molecular circuits

(4) computation is less sensitive to the parameters of the

molecular circuits
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(5) noise owing to thermal fluctuations in molecular

devices

(5) noise owing to round off error and temporal aliasing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(6) signal is not restored at each stage of the computation (6) signal is restored at each stage of the computation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(7) robust at final and decisive outputs (7) robust in every device and signal
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Molecular noise in cells
There are a lot of experimental measurements and numbers available for S. cerevisae. Hence, we
shall use it as our representative cell. For any gene, the Poisson shot noise of molecular flux
that produces mRNA from genetic DNA and of molecular flux that produces protein from the
mRNA is averaged over the bandwidth of an RC-like protein degradation filter to generate a
mean protein copy number Nprot [1,31]. It also generates fluctuations around this mean with a

mean square value of n2
prot [1,32]. In figure 1a, Nprot and n2

prot correspond to the mean value and
fluctuations of Vprot, respectively.

Typically, mean mRNA copy numbers, NmRNA, are low (0.1 to 130 in S. cerevisae) [34–37], while
protein copy numbers are high (50–106 in S. cerevisae), and mRNA degradation time constants,
τmRNA, are small (3–90 min in S. cerevisae) [35] while protein degradation time constants, τprot, are
large (10–1000 min in S. cerevisae) [38]. Therefore, there is molecular gain from mRNA to protein,
Av = Nprot/NmRNA or Vprot/VmRNA in figure 1a, which amplifies the mRNA noise content in the
protein signal. However, owing to the averaging caused by an effective bandwidth reduction
factor of τmRNA/τprot, there is also a reduction in mRNA noise content in the protein signal in
figure 1a. The total noise of the protein signal is owing to the net mRNA noise content as well as
that owing to the intrinsic shot noise of the Poisson protein molecular flux. That is,

βeff = Av
τmRNA

τprot

and n2
prot = Nprot(βeff + 1).

⎫⎪⎬
⎪⎭ (3.1)

The equations in figure 1a show circuit parameters for βeff and Av. These circuit parameters
reproduce equation (3.1) exactly with τmRNA = RmRNAC, τprot = RprotC and Vprot = Nprot. The
output signal-to-noise ratio SN is then given by

SN =
N2

prot

n2
prot

= Nprot

βeff + 1
. (3.2)
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The equivalent informational bit precision [39] is given by

Nbits = 1
2

log2(1 + SN). (3.3)

Equations (3.2) and (3.3) reveal that, to encode an output signal at high precision (large SN or
large Nbits), the molecular protein copy number Nprot and consequently the mRNA copy number
need to increase in proportion with SN:

Nprot = (βeff + 1)SN

NmRNA = Nprot

Av
.

(3.4)

(b) Signal power consumption
Protein and mRNA molecules have to be constantly synthesized to counter their degradation,
and this synthesis consumes power. The synthesis power is provided by the hydrolysis of several
molecules of adenosine triphosphate (ATP), the universal energy-providing molecular currency
of cells. ATP hydrolysis enables various processes in transcription and translation to move
forward in a nearly irreversible fashion [2]. The hydrolysis of one molecule of ATP provides nearly
20 kT [40]. The energy cost of synthesizing an mRNA molecule in ATP is EmRNA ≈ 30LmRNA
[37], where LmRNA is the length of the mRNA molecule in nucleotides, with a median value of
LmRNA = 1474 nucleotides for yeast [34,36]. Similarly, the energy cost of synthesizing a protein
molecule in ATP is Eprot ≈ 50Lprot [37], where Lprot is the length of the protein molecule in amino
acids, with a median value of Lprot = 385 amino acids in yeast. Hence, the power consumption
needed to charge or maintain a protein signal level of Nprot is given by

Pprot = EmRNANmRNA

τmRNA
+ EprotNprot

τprot
,

Pprot = EmRNANprot

τmRNAAv
+ EprotNprot

τprot
,

Pprot = EmRNANprot

τprotβeff
+ EprotNprot

τprot
,

and Pprot = Nprot
τprot

(
EmRNA

βeff
+ Eprot

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

(c) Minimization of power consumption
If we substitute for Nprot in the boxed expression in equation (3.5) with its value in equation (3.4),
we find another important relationship

Pprot = SN
τprot

(βeff + 1)
(

EmRNA
βeff

+ Eprot

)
. (3.6)

Equation (3.6) is a classic example of a resource–precision equation [1,14] that quantifies how power
consumption (the resource) increases as the speed (1/τprot) and the precision (SN) of signals in a
computation increase. Such resource–precision relationships are universal and can be found in
neurobiological, electrical, mechanical and all systems [1]. Intuitively, to be fast and precise, a
scenario that maximizes information, a system consumes power. Hence, universal information-
based principles to reduce power consumption in any system from brains to electronic systems
architect methods to reduce speed or precision at local state variables while maintaining system
speed and precision [1,41]. For example, slow-and-parallel systems with moderate local precision
lead to very power efficient systems, both in the brain and in electronics [1]. Equation (3.4) is
another example of a resource–precision equation but the resource here is molecular copy number
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rather than power consumption. In electronic systems, resource–precision equations relate power
consumption and area consumption on chips to speed and precision [1,14].

Equation (3.6) suggests that, for a given precision (SN) and speed (1/τprot), there is an
optimum value of βeff that reduces power consumption. Simple differentiation reveals that
this optimum occurs when

β
opt
eff =

√
EmRNA

Eprot
. (3.7)

At this optimum, we can substitute for βeff in equation (3.5) or in equation (3.6) to determine the
power consumption

Pmin
prot = Nprot

τprot

√
Eprot

(√
EmRNA +

√
Eprot

)

and Pmin
prot = SN

τprot

(√
EmRNA +

√
Eprot

)2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

From equation (3.1), for a given speed of operation, 1/τprot, the optimum βeff can be attained
either by varying the gain Av if the time constants are fixed, or by varying τmRNA if Av is fixed. If
τmRNA is fixed, and 1/τprot is increased to improve the speed of the computation, then Av must
be lowered to maintain βeff at its optimal value.

(d) An analog molecular adder
To implement a molecular adder via analog computation is simple: we have the two inputs
to be added; each regulates the expression of a common output protein from independent
genetic promoters. During synthesis, the two molecular fluxes will automatically add to create
the common output protein, which is the answer. To enable linear analog operation and avoid
saturated digital operation, the input proteins must operate at a concentration that is well below
Kd, the binding constant of the DNA promoter. A large Kd can be architected by using weak,
mutated or multiple-binding-site promoters [22,31]. As the input and output concentrations
increase, the input and output noise reduce, the precision of the computation improves, but
at the price of higher molecular count and higher power consumption. The computation only
requires two genetic parts, independent of precision or molecular count, which makes it practical
to implement. To estimate the costs of this computation, we shall assume, for simplicity, that
the input and output molecular counts are equal (promoters with a net gain of 1), which enable
both the precision of the input and output to concomitantly scale with the overall needs of the
computational precision. A proportionate gain scaling between the input and output is also
possible but adds complexity while obscuring the key insights that we want to emphasize.

Analogous to how mRNA noise flux propagates to protein outputs and increases noise, the
input noise flux propagates to the adder output. Thus, the adder will have twice the squared
noise as would be expected from its output molecular count alone. Therefore, to preserve the SN
all molecular counts must be increased by a factor of 2 at the input and output, leading to a four
times larger total molecular count for the same SN. Thus, the fundamental resource–precision
equations for one signal, equations (3.4) and (3.5), cause the resource–precision equations for the
molecular count, NA, and power consumption, PA, of the analog adder to be

NA = 4(βeff + 1)SN

and PA = NA

τprot

(
EmRNA

βeff
+ Eprot

)
.

⎫⎪⎬
⎪⎭ (3.9)

Circuit noise-analysis techniques described in [1] can be used to derive resource–precision
equations similar to equation (3.9) for arbitrarily complex analog computations.
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(e) A digital molecular adder
An N-bit digital molecular adder requires 1 half-adder logic circuit (binary addition without carry
for the least significant bit), N − 1 full-adder circuits (binary addition with carry for the N − 1
other bits) and two N-bit inputs. Appendix A presents that the total number of logic gates, each
of whose outputs requires energy-consuming molecular synthesis, as well as 2N inputs, adds up
to 17 N − 7 net protein (and associated mRNA) state variables for N ≥ 2. If N = 1, six protein state
variables are needed.

At high ‘1’ levels, protein synthesis occurs at a high rate, and at low ‘0’ levels, protein synthesis
occurs at a lower rate. To minimize the power consumption, digital logic gates must have as
small a protein copy number for high values as possible. At low values, the ‘leakage’ or ‘basal
transcription’ in the genetic circuits will then limit practical implementations to 100-fold or 1000-
fold lower protein copy numbers (NmRNA varies from 0.1 to 130 in yeast and protein copy
numbers then vary proportionately [34–37]). However, the ‘1’ value must be sufficiently large
such that it enables saturated operation, which is necessary for robust digital signal restoration
in signal cascades, for a low bit error rate owing to sufficient noise margins between ‘1’ and ‘0’
values, for enabling robust fan-out that is not compromised by loading, and for robust operation
in spite of Kd variations among gates. The parameter Kd is an equilibrium chemical binding
constant that effectively behaves as a threshold voltage in the digital operation.

A reasonable design choice is to use a ‘1’ value that is at least 10 times the Kd of the logic
promoter such that multiple logic gates can function together in fan-out or cascade configurations
with good noise margins and in spite of Kd variations among gates. Note that Kd variations among
gates can be static or dynamic owing to loading and crosstalk. As in all engineering systems,
a robustness–efficiency trade-off exists: a large ‘1’ value will robustly guarantee saturation and
signal restoration, good noise margins with low error rate, robust fan-out and robustness to Kd
variations but will require higher power consumption to encode the ‘1’.

Measured Kd’s for signalling proteins are usually in the 30 nM–10 µM range [42], and some
sources report about 10 nM [43]. We shall assume that 10 nM is practical for all of our logic
gates, and that all operate at a ‘1’ value that is 10 Kd and at a ‘0’ value that is at least 200
times lower. As yeast is approximately 200 µm3 in volume [31,43], 200 molecules correspond to
1 nM and 2000 molecules correspond to 10 nM (near the median copy number of most proteins
in yeast [34–37]). Thus, a ‘1’ value corresponds to 20 000 molecules. If NdigHI = 20 000, then
NdigLO = 20 000/200 = 100, which is about two times the lowest measured copy numbers in
yeast [34–37]. The exact value of NdigLO does not matter too much as long as it is sufficiently low.

Many signalling proteins require at least dimerization to bind, which doubles molecular count
and power consumption for the same Kd; but, we could reduce the ‘1’ value to operate at 5Kd
owing to higher digital slopes, thus halving molecular count and power consumption. Thus, we
shall, for simplicity, ignore dimerization and polymerization effects that are, to first order, neutral
w.r.t. resource consumption in our analysis. For simplicity, we shall also assume that any logic
gate operates at saturated values that are the same as that of its inputs such that logic gates
can be easily composed and cascaded similar to that in today’s electronic systems. Otherwise,
digital implementations will require molecular gain and attenuation between logic stages. So, our
assumption is generous to digital implementations.

Appendix A presents that the delay of the digital adder is approximately (N + 2)τprot.
Therefore, for the same speed as a parallel analog adder, each logic stage of the digital adder
must decrease its degradation time constant, τdigN, according to

τdigN = τprot

N + 2
. (3.10)

From equation (3.1), to operate at the optimal βeff given by equation (3.7), the gain Av can be
adjusted to AvdigN according to

AvdigN = βeff
τdigN

τmRNA
. (3.11)
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Table 2. Parameters used for molecular addition.

parameter value

τmRNA 3 min
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τprot 1000 min
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NdigHI 20 000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NdigLO 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

phi 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plo 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βeff = β
opt
eff 2.49

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If the probabilities of low and high values in the adder are plow and phigh, respectively, with
corresponding values of NdigHI and NdigLO for the protein state variables, then the resource–
precision equations for the molecular count, ND, and the power consumption, PD, of the digital
adder can be computed to be

Ndig = phiNdigHI + ploNdigLO,

ND = (17N − 7)Ndig

and PD = ND(N + 2)
τprot

(
EmRNA

βeff
+ Eprot

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.12)

For most computations, phi = plo = 0.5 if we average across all possible inputs. Random additive
inputs to our adder will generate equal probabilities of ones and zeros.

(f) Analog addition versus digital addition
The resource–precision equations for analog addition are described by equation (3.9), while those
for digital addition are described by equation (3.12). To compare the costs of analog versus digital
addition at the same speed (1/τprot) and precision (SN for analog and N for digital), we use
equation (3.3) to convert SN to an equivalent number of bits Nbits. With the analog and digital
precision now in the same units (N for digital and Nbits for analog), we can compare analog and
digital computation w.r.t. their resource consumption of molecules or power consumption. Table 2
lists a set of parameters for yeast used to make this comparison [34–38,44], which were chosen to
minimize power consumption in the analog and digital domains.

Figure 2a reveals that the costs of analog power consumption in ATP s−1 are significantly less
than those of digital power consumption even at nearly 10 bits of precision. At this crossover
precision, the power consumption is a staggering 10 million ATP s−1, so high that a yeast cell will
be using almost its entire power budget to add two numbers at 10-bit precision! It is not surprising
then that cells do not waste their energy doing highly accurate digital computation as computers
do. The figure also implies that a synthetic biological circuit that just has 163 simple two-input
deterministically robust logic gates is not practical. Thus, deterministic digital approaches to
synthetic computation have barely scaled over a decade [9] and seem unlikely to in the future.
Digital computation will likely have to be probabilistic and therefore behave more as noisy analog
computation with a lower value of NdigHI. A lower value of NdigHI will necessarily make digital
computation less robust and more probabilistic as we discuss in §3g. Probabilistic ‘dithering’
converts digital black-and-white pixels in an image to greyscale pixels. Thus probabilistic digital
operation will have similarities to noisy analog operation, which is in fact noisy precisely because
many probabilistic digital Poisson events constitute its value [1,11].
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Figure 2. Analog versus digital computation in cells. (a) The figure shows the power costs for doing addition in cells with a
genetic circuit. (b) The figure shows the molecular protein number required for doing addition in cells with a genetic circuit.

Figure 2b shows that the costs of analog addition in total protein molecular number are also
significantly less than those of digital addition even at nearly 8 bits of precision. At this crossover
precision, a staggering 1 million protein molecules are involved in addition. This number is about
1 in every 1000 protein molecules in yeast [31], which may be possible in the analog approach
and harder in the digital approach (because 129 logic gates are needed). However, from [44],
this 1/1000 change is about three orders of magnitude higher than the change needed to impact
evolution in a yeast population. Therefore, the molecular-count costs of adding at 8-bit precision
in a cell are still very expensive. At the 8-bit crossover in figure 2b, figure 2a shows that the
corresponding analog power consumption is almost an order of magnitude less than digital
power consumption.

High molecular copy numbers and high power consumption are characteristic of high-
precision computation. Both lead to toxicity in the cell: high protein copy numbers can cause
inadvertent binding of high-copy-number molecules to molecules in essential pathways and
interfere with their function via competitive binding. High power consumption generates reactive
oxygen species that lead to oxidative stress, cellular damage and cell death. So, high power
consumption is not just an undesirable feature in cells as it is in some electronic systems: it actually
leads to death. In some electronic systems, especially digital ones, high power consumption can
lead to catastrophic failure of portions of a chip via thermal runaway effects.

(g) Analog versus digital
Do the lessons learned from the example of addition generalize to other computations? Are these
lessons sensitive to our parameter values and assumptions? All computations have analog–digital
crossover curves similar to those in figure 2a,b but the exact crossover precision depends on the
computational task. Tasks that can be performed with fewer analog parts push the crossover
point to higher precision [1,14]. Feedback loops in analog computation that correct for error push
the crossover to higher precision [1]. Parameter changes can certainly shift the location of the
crossover point and are different in different technologies—in electronics, in neurobiology and in
cells [1,14].

As an example of how parameters can shift the analog–digital crossover point, let us assume
that NdigHI = 2 K instead of 20 K such that digital power consumption is reduced by nearly 10
times. The analog–digital crossover point for power consumption will then be near 7 bits rather
than 10 bits for addition, which is still very precise for a cell. In practice, there may be several
problems associated with this lower value of NdigHI: with NdigHI = 2 K, we require operation
at Kd = 1 nM for all gates in the digital adder. The low Kd requires significant DNA–protein



12

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20130110

.........................................................

engineering to improve chemical binding for all adder molecules, and also leads to a significant
slowing of transcription-factor binding to DNA analogous to similar trade-offs seen in translation
[45]. Higher noise caused by a lower NdigHI increases the bit error rate in each channel, making
the overall digital computation more probabilistic. As the median protein copy number in yeast is
nearly 2000 [34–37], the lower NdigHI may also lead to significant crosstalk owing to competitive
binding with background molecules. As βeff is not likely at its optimal value for all digital signal
variables as we have assumed, each of them will be noisier, such that the lower NdigHI may
significantly increase bit error rate. Finally, even with NdigHI at a 10 times lower value, nearly 10%
of the cell’s power budget would just be spent on 7-bit addition, compromising its other functions
severely. At a 100 times lower value of NdigHI = 200, digital operation will be highly probabilistic
owing to insufficient noise margins and it would require significant engineering to reduce NdigLO
to values near 20 to achieve on–off ratios of just 10: protein copy numbers below 50 are extremely
rare in yeast [34–37]. So our choice of NdigHI = 20 K to get yeast cells to perform digital addition
with 163 gates in a deterministic and robust digital fashion appears to be reasonable. By contrast,
as the analog approach only requires two genes, it is significantly easier to engineer and optimize.

The fundamental reason for the analog–digital crossover does not lie in issues having to do
with parameters and numbers. It really lies in information theory: information is coded across
many 1-bit-precise interacting computational channels in the digital approach but on 1 multi-bit
computational channel in the analog approach [14]. At low informational precision, logic basis
functions simply cannot compete with the richer basis functions of analog computation that can
process all the bits at once in parallel and just automatically solve the task, e.g. by using Kirchoff’s
current law for addition or chemical binding for multiplication. At high precision, however, the
fundamental laws of large numbers and thermodynamics require the noise per computational
channel to be too low in analog computation: the low-noise requirement drastically increases the
costs of energy (more energy enables more molecules to be produced), time (more time allows
for more noise reduction via averaging) or space (molecular count or parallel and redundant
architectures cost volume) for analog computation. Digital computation wisely distributes the
information and information processing over many channels that interact with each other to
preserve information, e.g. in the case of addition via a carry. No one channel is required to perform
heroically in digital computation. Thus, the polynomial scaling of resource costs with N = Nbits
in digital computation, e.g. in equation (3.12) or equivalently its logarithmic scaling with SN in
equation (3.3), eventually always outcompete analog computation’s polynomial scaling with SN,
e.g. in equation (3.9).

From analyses such as this one and others, we have concluded that the most efficient and
scalable form of computation for arbitrary precision and complexity is a hybrid of analog and
digital computation termed as collective analog computation [1,14,19,20]. In this form, several
moderate-precision analog computational units interact to preserve and process information as
many interacting analog neurons in the brain do. Certainly, one often uses digital signals for
decision-making, signal restoration and communication within and among the analog units.
For example, the first 16-bit (and scalably) precise analog adder in electronics works in this
fashion on an experimental silicon chip [20]. Given current experimental data, it is likely that
cells use many interacting 2- to 5-bit-precise analog computations to compute. Neurons also use
distributed computation with moderate-precision analog components to reduce their significant
energy costs [14,46,47].

Hybrid analog–digital architectures termed as hybrid-state machines (HSMs) [1] are useful for
describing computations in cells in development or cell cycle pathways [2]. These machines
provide a methodology for gene–protein networks to compute in a sequential analog fashion
and generalize the notion of finite state machines to the hybrid analog–digital domain. HSMs also
provide a good framework for describing spiking neuronal computation [19,20]. Indeed, there are
13 similarities between gene–protein and neural computation from a hybrid analog–digital point
of view [1], and in vitro molecular computation has attempted to engineer neural-network-like
computations [48].
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Figure 3. The cytomorphic mapping. (a) The figure shows the deep connections between electronic flow in transistors and
molecular flow in chemical reactions caused by their obeying the same laws of thermodynamics. (b) The figure shows that this
similarity enables circuits in both domains to be mapped to each other.

4. Deep connections between electronics and chemistry
There are striking similarities between chemical-reaction dynamics (figure 3a) and electronic
current flow in the subthreshold regime of transistor operation (figure 3b): electron concentration
at the source is analogous to reactant concentration; electron concentration at the drain
is analogous to product concentration; forward and reverse current flows in the transistor are
analogous to forward and reverse reaction rates in a chemical reaction; the forward and reverse
currents in a transistor are exponential in voltage differences at its terminals analogous to reaction
rates being exponential in the free-energy differences in a chemical reaction; increases in gate
voltage lower energy barriers in a transistor increasing current flow analogous to the effects of
enzymes or catalysts in chemical reactions that increase reaction rates; and the stochastics of the
Poisson shot noise in subthreshold transistors are analogous to the stochastics of molecular shot
noise in reactions. Some of these analogies have been listed in the table 3.

The logarithmic dependence of the electrochemical potential in chemical concentration or
of current enables one to map log-domain analog transistor circuit motifs in electronics to
log-domain analog molecular circuit motifs in cells and vice versa.

If we examine the classic Michaelis–Menten enzyme–substrate binding basis function, we
find that

(x/Kd)
1 + (x/Kd)

= 1
1 + e− ln(x/Kd)

. (4.1)
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Table 3. Chemistry and electronics.

chemical-reaction dynamics electron flow in transistor

reactant concentration electron concentration at the source
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

product concentration electron concentration at the drain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

forward and reverse reaction rates in chemical reaction forward and reverse current flows in the transistor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

forward and reverse chemical reaction rates are

exponential in the free-energy difference between

transition state and reactant/product, respectively

forward and reverse electronic currents are exponential in

the voltage difference between transistor channel and

source/drain, respectively
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

enzymes or catalysts in chemical reactions increase

reaction rates

increases in gate voltage lower energy barriers in a

transistor, increasing current flow
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

stochastics of molecular Poisson processes in chemical

reactions [1,11]

stochastics of electronic Poisson processes in subthreshold

transistors [1,11]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flux balance analysis Kirchoff’s current law
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chemical energy conservation Kirchoff’s voltage law
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chemical concentration current
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

electrochemical potential: log(concentration)+ energy electrochemical potential: log(current)+ voltage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, if we look at the left-hand side, the basis function may be viewed as being
approximately linear and proportional to (x/Kd) for x < Kd and saturating after x = 10 Kd; or, if
we look at the right-hand side, it may be viewed as being log-linear over the range 0.1Kd < x <

10Kd where the sigmoid is linear. Hence, this basis function has a log-linear analog regime of
operation over the central portion of the sigmoid and a saturating digital regime at the extremes
of the sigmoid. Note that ln(Kd) is proportional to the free energy of the binding reaction.
Highly compact eight-transistor log-domain analog differential-pair circuits generate almost
exactly identical mathematical basis functions in either the linear current [21] (left-hand side of
equation (4.1)) or log-linear voltage domain [1] (right-hand side of (4.1)). Log-domain analog
circuits can generate any polynomially linear or polynomially nonlinear dynamical system in both
electronics and in chemistry [1]. In particular, they can generate dynamical systems of the form

dx
dt

= C + Dx + E(x ⊗ x) + Fu + G(x ⊗ u)

and y = Hx + Ku,

⎫⎪⎬
⎪⎭ (4.2)

where x and u are vector state and input variables, respectively, the matrix coefficients are
determined by chemical-reaction parameters, and the multiply operations refer to outer products
derived from two-molecule chemical binding. The limitation to two-molecule binding is for
practicality and leads to no loss of generality [1]: two molecules can bind to generate a complex,
and the complex can then bind to the third as is true in most chemical reactions.

Figure 3b shows that the cytomorphic mapping between electronics and chemistry outlined in
figure 3a and table 3 enables one to map from electronic circuits to DNA–protein circuits and vice
versa. In this article, we focus on the mapping from electronic circuits to molecular circuits, which
is most useful in synthetic biology. The other direction of mapping has been extensively discussed
in [1] and is useful for the design and simulation of synthetic biological circuits or the ultrafast
stochastic simulation of large-scale systems-biology circuits with supercomputing chips.

5. Logarithmic analog computation in living cells
To widen the dynamic range of input operation of an inducer, it is useful to have a wide log-
linear range. Logarithmic transduction affords advantages such as constant-precision sensing at
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Figure 4. A positive-feedback linearization circuit. (a) A genetic circuit that linearizes inducer operation over a wide log-linear
dynamic range is shown. (b) An analog circuit schematic represents this circuit.

any intensity (Weber’s law) and is seen in many natural systems, including audition, vision and
in cells [49].

If the concentration of a transcription factor is fixed, as the inducer increases in value, it will
eventually be bound to all the available transcription-factor molecules and saturate the number
of bound inducer–transcription-factor complexes that are possible. In addition, if the number of
DNA-binding sites for a complex is limited, these sites will eventually all be bound by complexes
and gene expression will saturate. These two sources of saturation limit the dynamic range
of inducer operation. Figure 4a shows a genetic circuit motif [22] and an associated circuit
schematic in figure 4b that simultaneously alleviates both these saturation problems to widen
the dynamic range.

In figure 4a, a positive-feedback loop increases the generation of transcription factor by
catalysing its own production on a low-copy plasmid. As the amount of inducer increases, more
transcription factors are created alleviating the saturation of complexes. The high-copy plasmid
has several binding sites that also shunt away the complexes, thus alleviating the saturation of
DNA-binding sites on the low-copy plasmid. The high-copy plasmid also serves to control the
gain of the positive-feedback loop by altering the number of complexes available to the low-copy
plasmid [22]. Such control exploits ‘the fan-out loading’ of the downstream high-copy plasmid
on the upstream low-copy plasmid as a desirable feature in our analog circuit. Fan-out is often a
problem in molecular digital circuits. Figure 5a shows that the log-linear dynamic range is almost
four orders of magnitude.

The genetic circuit of figure 4a actually exploits an idea from log-domain analog circuit design
shown in figure 5b: expansive sinh-based linearization of compressive and saturating tanh-based
differential-pair circuits causes them to widen their linear range of operation [24]. The function of
the sinh is achieved by positive feedback in figure 4a and the function of the tanh is analogous to
that of the saturation of biochemical binding. Indeed, in the future, other linearization circuit
motifs from log-domain circuit design, e.g. those in [1], could also be exported to cells. The
supplementary section of [22] models details how, analogous to the case in electronics [24], the
widest dynamic range in the circuit motif of figure 4a is achieved at an optimal value of positive
feedback.

Figure 6a and its associated schematic in figure 6b show how to use logarithms to divide
by using log(A) − log(B) = log(A/B): two linearized positive-feedback circuit motifs enable two
inducers, Arab and AHL, to effectively control the expression of the mCherry fluorescent protein
on the high-copy plasmid. The Arab input controls mCherry by activating its production. The AHL
input generates LacI on the low-copy plasmid, which then represses mCherry production. The
IPTG inducer fine-tunes this repression gain. The RBS1 and RBS2 translation gains (analogous
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Figure 7. A power-law circuit. (a) A genetic power-law circuit. (b) An associated electrical equivalent schematic is shown.
(c) The experimental data for the genetic circuit.

to grib in figure 1a) also serve to fine-tune the gain of the positive logarithm w.r.t. the gain
of the negative logarithm. The net result is that the logarithmic ratio of the two inducer
molecules in figure 6c is obtained over almost four orders of magnitude. This ‘pRATIO’ circuit
generalizes the concept of pH, a logarithmic ratio used to measure H+ concentration w.r.t. a
reference, to any arbitrary ratio of two inputs w.r.t. one another. It may have applications for
the wide-dynamic-range sensing of biomolecules by serving as a log differential amplifier.

In log-linear systems, the computational basis functions needed for universality besides the
logarithm itself are addition, subtraction and scaling. Daniel et al. [22] shows how to architect
logarithmic addition by merely summing up fluxes as in our analog adder. We have already
shown how to subtract two logarithmic inputs in figure 6a,b. Scaling is also implicit in figure 6a,b
(via the IPTG, RBS1 and RBS2 gains). The equivalent of addition, subtraction and scaling with
logarithms corresponds to multiplication, division and power laws in the linear domain, much as
in the operation of slide rules.
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Figure 7a and its associated circuit schematic in figure 7b show how to compute a power law
without any explicit use of logarithms: the high-copy plasmid produces a high level of LacI that
strongly represses AraC production with AraC = gAraC(Kdf/LacI)(IPTG/Km)h; IPTG controls the
strength of its de-repression according to the inherent power law h, and gAraC is the gain of
the first-stage amplifier in figure 7b. As the low-copy production of AraC does not saturate the
binding sites on the high-copy plasmid, the falling AraC reduces the level of LacI in a relatively
linear fashion according to LacI = gLacI (AraC/Kd), with gLacI being the gain of the second-stage
amplifier of figure 7b. The net consequence of the negative feedback is then that LacI must
equilibrate at a consistent value, where

LacI = gLacI
gAraC(Kdf/LacI)(IPTG/Km)h

Kd

and LacI =
√

gLacIgAraC

(
Kdf

Kd

) (
IPTG
Km

)h
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.1)

The net power law w.r.t. IPTG is then h/2, which in figure 7c is found to be about 0.7. The
supplementary section in [22] provides further details. This power-law circuit only requires two
transcription factors to implement, in contrast to an in vitro circuit, which required 130 DNA parts
to implement a square-root circuit with 2 bits of output precision [23].

6. Summary
We summarize by reviewing seven benefits of analog computation in cells, which are important
for synthetic (and systems) biology.

(1) Digital computation is a subset of analog computation that only operates at its saturated high
or low extremes. Therefore, by allowing operation over the whole range of signal levels
and by allowing exploitation of all the basis functions of biochemistry and biophysics,
not just logic, horizons for computation are expanded. Digital computation will continue
to be important for decision-making, signal restoration, communication and sequential
operation.

(2) At the moderate precision of computation seen in cells, analog computation is significantly more
efficient in its use of energy, time and space (molecular count and part count) than digital
computation. Therefore, analog and collective analog computation is likely to be more
practical and scalable for synthetic biology than purely digital computation.

(3) Probabilistic digital computation operates with analog probabilities, and behaves as noisy analog
computation. As even digital computation in cells may be forced to be probabilistic to cope
with constraints on part count, molecular count and energy, analog computation may be
inevitable.

(4) Problems such as loading and fan-out, which are limiting the scaling of synthetic biology, are
part of the design process of analog computation, which uses concepts of input and output
impedance and feedback design to cope with such problems. It can even exploit them for
computation (figure 4a,b).

(5) Analog design, which has been developed over several decades, provides accurate pictorial
motifs with abstraction (figure 1b) unlike pure differential-equation design, but these
abstractions are not oversimplified as in molecular logic design.

(6) The great similarities between neural and cellular computation suggest that analog
computation in the cell may have predated and pioneered analog computation in the brain.

(7) The deep cytomorphic connection between electronics and chemistry via the common
electrochemical potential can enable log-domain analog electronic circuits to inspire new analog
circuit motifs in cells and vice versa. Therefore, future work in synthetic biology or in
systems biology will be likely to benefit from the cytomorphic mapping (figure 3a,b).
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Appendix A. Costs of N-bit digital molecular addition
An N-bit digital adder uses one ‘half-adder’ logic circuit (addition of two binary numbers A0 and
B0 with no carry) at its least significant bit (LSB) and N − 1 ‘full-adder’ logic circuits (addition
of two binary numbers An, Bn, and the carry Cn−1 from the previous bit) at all other N − 1 bits.
This architecture outputs local binary answers at each bit stage and also propagates carries to
neighbouring bit stages. The carries propagate such that the most significant bit (the ‘MSB’ stage at
bit N − 1 with LSB being at bit 0) is the very last stage to output its answer. This scheme of addition
is really just a binary version of classic decimal addition. More complex schemes, for example
Brent–Kung adders, can reduce carry propagation delays but are too complex in a molecular
context and do not alter any of the conclusions of this paper. Therefore, we shall only consider
simple addition of two positive numbers via the classic method of addition described above. We
shall also not delve into two’s complement arithmetic because we shall assume that all numbers
are positive.

The half-adder stage implements the following logic for the local sum S0 and carry C0:

S0 = A0B0 + B0A0

and

C0 = A0B0.

These logic functions can be implemented with two genetic promoter circuits that each implement
a half-sided XOR (such circuits are common as a repressor and an activator often interact in
genetic promoter circuits), one genetic OR promoter circuit, and one genetic AND promoter
circuit. All of these two-input genetic circuits have been reported in the literature and are possible
to synthesize [31]. We shall refer to the half-sided XOR circuit as an H-XOR. Three-input genetic
circuits have thus far not been robust or easy to synthesize, so we shall not use them.

The full-adder stage at the nth bit implements the following logic for the local sum Sn and
carry Cn:

Sn = (AnBn)Cn−1 + (BnAn)Cn−1 + (Cn−1An)Bn + (AnBn)Cn−1

and

Cn = AnBn + (An + Bn)Cn−1.

Thus, it requires 3 × 2 H-XORs that need to be composed in cascade (for Sn), four ANDs
(two cascaded for Sn and two for Cn) and five ORs. In our scheme of architecting the digital-
adder circuit, no signal inversions are necessary, which saves gates. However, it does assume
a combinatorial set of promoters that respond to inverted and non-inverted logical signals
as needed. Such promoters cost no power and add no molecular count in our accounting.
Thus, we are likely to be underestimating digital resource consumption compared with an
actual implementation.

Hence, if N is at least 2 (the 1-bit case is degenerate because there are no full-adder circuits) the
net number of gates, each of whose molecular outputs leads to an energy-consuming synthesis
operation, and the net number of molecular inputs, which also lead to energy-consuming
synthesis operations, can be computed from table 4.

http://www.rle.mit.edu/acbs/
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Table 4. Resource consumption in an N-bit digital adder.

LSB sum and (N − 1) MSB NMSB N-bit
carry gates sum gates carry gates inputs gate total

2 6(N − 1) 0 0 H-XOR 6N − 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2(N − 1) 2N 0 AND 4N − 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 3(N − 1) 2N 0 OR 5N − 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 2N input (no gate) 2N
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total molecules (no. of gate

outputs plus inputs)

17N − 7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As the final MSB output requires N stages of carry propagation, and the local sum and carry
generation stages incur two logic-gate delays, the worst-case delay of the adder is approximately
(N + 2)τprot, where τprot is protein degradation time constant of any logic gate.

For simplicity, we have assumed that there is no crosstalk between gates, which for a large
number of gates may be difficult to architect in practice.
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